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APPROXIMATING CONDITIONAL MOMENTS OF THE MULTIVARIATE
NORMAL. DISTRIBUTION

By
Joseph G. Deken

ABSTRACT

A practical method for computing the conditional expectation of a
polynomial in the components of a multivariate normal random variable
X, vhen X 18 restricted to a subset of Rp, is given. This method
makes the application of certain missing data techniques possible in

cases where repeated numerical integration is not feasible.
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APPROXIMATING CONDITIONAL MOMENTS OF THE MULTIVARIATE

NORMAL DISTRIBUTION

By

Joseph G. Deken

1. Introduction.

The conditional moments such as E(X;‘) of a multivariate normal random
variable X = (Xl,X2,...,Xp), when X 1is restricted to a subset
A c]Rp, are not readily obtained numerically, since the required
integration in p-dimensions is time=consuming except for very small
P- These conditional moments are of interest, for example in the
derivation of E-M estimates in missing data problems (Dempster, Laird
and Rubin, 1977). We present here an efficient approximation scheme for these
moments, which makes the computation practical for moderately large p.

For convenience of description, we restrict attention to sets
A of the form Il X 12 X eee X Ip, where all the I,j are intervals,
but the approach is more general, as indicated below. We start by

observing that the approximations to the ratio

_ 8-t
B —7
s+t 2
j e co dx
s-t

obtained by the first terms in a Taylor series around t = O may be
written as polynomials in u:
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The conditional expectation of a polynomial P(X) = a.0+alx+a2x2 +-.-+anx“
in the normal random variable X is thus approximated by replacing P
by a polynomial Q(p) in the mean of X, where the transformation

T(s,t,ae): P+ Q is lipnear. Since the transformation V: ¢ +b defined

by
m m
z ca (g+hX )a = z beB
a=0 =0

is also linear, and the conditional mean of Xp given xl,..., is

xp_l
of the form (g+hxp_1) vhere g 1s linear in X sees ’xp-2’ any approxi-
mation to EX'; which is a polynomial in the mean of xp will produce a
polynomial in (xl,...,xp_l) vhen xp is conditional on xl,...,xp_l.
The conditional expectation in r may thus be accomplished in 2p

steps, by applylng T and then V in succession p times, to obtain
N o
E(- |x1...xp.1) ~ E(.]xl,,,xp_e) N oe.o ®E(e le) ~a§0 oty -

Computationally, this process requires 2p matrix multiplications and is
thus practical for moderate p.
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2. _An Example.

The following simple example will serve to establish some ideas

and notation. let

s+t T 2

Ik(O'e,u,s,t) = kae X ax .
s=t

We are concerned with the conditional expectation Ik/Io of xk, where

X 1is a normal random variable. The sum of the first terms of a Taylor

series for this ratio about t = 0 is of the form

2

» 2
1) cm(o' sl St )

éMtﬁ

o=

but also may be represented by identifying the coefficients of pa in (1)

o 2

q 2 a
: Ca(O' ,S,t)p .
a=0

For example, (letting v = 02)

2
- - - I
I/I=s+£1‘-'s)t »20(s-p) + (s t +aee
170 3v hs;
(L -llt2v2+2thv+82th) . (;zzevz-et"v-jsgtl‘ o+ ﬂ
U5y 45v°
(Lth_)ua - (_E?_)ul‘ ‘oo |
15¢ 45v

;
1.4
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3. Multiple Intggra.tion.

If (xl,xg) are bivariate normal, the conditional distribution of

2
X5 given Xy is n(u2+b21 (_xl-;..,l ), 02.1)- The approximation procedure

'i given above yields (writing p for
‘ the matrix whose j,k'h element is

: of I 3/ I, )

the vector of coefficients of P, and with C
the coefficient of uk in the approximation

3
. 2
; E(P(x2)|x2€(82-t2,82+t2),xl) = <Bc(82,t2,02-1))(u2+b21<xl-“l)) o
",‘ This last is of course a polynomial in Xy, with coefficients
k|
%
s a 2 g O
; % = Py ﬂ); (pC(855t5005 1 ))p (oz)(“‘e'bz‘l“‘l)‘3 ’
a *
8o that
|
E(P(X,)|X e (s,-t,,8,+8,), X €(s)-t,,8,+t,)) =
X -
- (gc(sl’tl’cl))(ul) .
Other cases (higher dimensions, multivariate polynomials) are treated
similarly, but it will be best to introduce some notation at this point.
If p 1is a vector of coefficients, then
SuBS(a,b,p) 1s a vector of coefficients,
. K=
(suBs (a,b,p))y = b) F(5) &t
k> J
(i.e. SUBS(a,b,p) is the vector of coefficients of y‘j when
a+by is substituted for x in p(x)).
-
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With the aid of a symbolic computation system such as MIT's MACSYMA,

the coefficients of the transformation

as functions i (vys,t) may he computed for much larger values of k

and @ then would be practical by hand. (A partial table of values ¢

is given in ap endix A of this paper. Card versions consisting of FORTRAN
assignment statements " ¢ (I,J) = .-- " may be obtained on request from
the author.) As subsequent examples show, the approximation of x: in

the box Il X I2 X ese Ip involves ¢ for higher values of m than

mo.
k, depending on the order of the underlying Taylor series. Fortunately,

the approximation based on only a few terms is quite accurate, as evidenced

by the following example: Since the integral

2 2 2
s+ S _(s=t) | (sx)”
Jf 3 2 2
xe dx =e -e s
s-t

the Taylor series

I, (1,0,8,t) 2 ous2 1

I,01,0,5,8) S - 3=+ t)

glves
2 2

I.(1,0,8,t) = ®(s+t)-0(s=t) m & £ .
© 1;2 2+2 L
vex l(l-g-‘*-u%—t )

The approximate values obtained for #(x) = .5 + ®(x) - 0(0) by this

method agree with tabled values for four decimal places for O < x < 1.1.
5
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;Eg(s,t,v,g) is a map from the scalars s,t,v and the vector p to the

vector pC(s,t,v), i.e. matrix postmultiplication, where we take

Y J
L/1, ~'a£% Cozh 88 defining C.
We will also consider INT as a function, so that if INT = (ao,al,...,am),
= PP .

then (INT)(x) ajta X + amxm

With the above notation, we can define multiple integrals in a fairly
compact fashion. The multivariate normal distribution may be parameterized
by a vector of means (ul,uz,...,pp), the conditional variances (Vi,...,Vb)
defined by V, = Var(X;), v, = Var(lexl,...,xj_l),j > 1, and the regression
coefficients b21’b32’b31""’bp,p-l""’bpl defined by

J=-1
E(lexl,...,xj_l) = iz b

D GU
o i i

One-dimensional integration is done directly:
(pys,tyusv) "(INT(s,t:V:B))(H) .

Further integrals (I2,I3,...) in higher dimensions are defined recursively,

e.g. in two dimensions:
12(8) %5850 bpsky ks V) s VpsBsy sR) =
(INT (5 % 5V »SUBS Dy by 0y » INR (855 855 V5 2))))
and from this we obtain the two-dimensional integral as
(128565855 sy s bps V5 Vo B 52D ) 1y ) -

6
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In general, IK = INT(...SUBS(...J(Kel))). We have rcstricted attention

here to sets of the form leI2><o-~ I

For more general sets A, & similar scheme would work provided the

where the I,j are intervals.

section of X:i. € A given Xl Xi-l is an interval with endpoints

vhich are polynomialsin X ’""Xi-l‘

1




4. A Numeric Implementation.

The following example shows how the three-dimensional conditional

+ expectation approximation may be defined, using only vector and matrix
arithmetic with numeric arguments. The polynomial to be approximated
is presumed to be of degree at most two, and perhaps bivariate in X2

and X3' (This case is general enough for all the means, squares, and

2
l’ 2’-0-

here the approximate values of E(XB), E()é), E(ngj)’ since other

products EX ,EX,,... EX EX;X 500 EX2X3). In fact, we describe

1
i
! expectations reduce, by interchange of variables, to these three. The

approximation used will include powers of t up to tl‘t inclusive, i.e.

: p)
a
Exd = Z c.a(s,t,v)p .
ao 9

P 6

The functions (e, .
Iy 0 J=1

a may be found in appendix A).

To approximgte E(X3) , the integration on X3 is first carried out,

yielding

3

(04

a§) C10 (852855 V5 ) (1 =11 Py =Ly, X by 4K b )
a af |

_ % p 4 o-(B+7)
o Crtes) B L (g ) (5 (030 1 (g migbs) cwobs)
3 3« 3 7
_ _ y-@p) o B B s
ago Bgo (7=§+a(a’5)cl7 (8555573 ) (g -y b5y -ys) Joz bz, ¢ XX, 1
The abo i % Bi‘a &
e above expression is of the form by X where

o plp B 1% %
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g y-@48)
Top = b51‘°52 2 (oc 8701y (857855v5) * (s =iy B3y -hgbs) ' i
Integration on X2 then yields:
3 3 xa :
a§o 5§O ‘g (7§0 Cay (3p5%55,) (ip iy Py 0 X, V) i
6 a QA3 3B 3 o
= s vhere s, = Y r 7 )b 2.
ago o 2 a 5=(a.§)vosa> 56 7d§-5(°"5 a1
- a
Cay (8p2%00 V) - (ipmiy By ) @),
and the final form is
B o B (et
s ,t.,v
o S o= G \F12 %101 “1

The approximation of )é is carried out in the same fashion:

B
% - L % L cap (Bt e
TR e ( ) -
s! = r! b S,,t,,V,
(o} 8=(G@=3)v 0 B0 50 7=a_5(oz 21 67 2’72’ "2

B8 7-(@+6) %
e = b31b52 =a+B(a )c (s5,t3,v )(u3 ulbil u2b52) .

(Note that the only change is the substitution of 027(55’t5’v5) for

ep, (55:85,75)).
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To approximate XEX , the first approximate integration is exactly

3

as in approximating X5 » but the resulting sum is

)

X (L ta raax?’@ ’

a=0 B0

i.e. we have r!, = )? B =1,...,4-00. A second integration gives

op a(B-1

3 L L2 y

so the final result is

6
2
s Con (842t 5V, it
agoa Bgo (o7- s Rt R Wt il

where

ouiB his 3
= b o Y -5
5=(-5)V0 =1 OF 7=§'-5 (.8®o1 Cpy (Sorpsv1 ) (bymnybyy

™

Higher Order Approximation, Higher Dimensions.

N
In general, if EX = } ¢
a=0

the three-dimensional integral will be of the form

a
10k

2N N 8
oL 8 Bgo caB(sl’tl’vl)“l ,

where

- (2) () _ () (p-1)
S “O{t: § g ¢ %op "ztzsaﬁy yeecs salae"’ap-i

10

)7‘(0"5) .

is taken as the basic approximation,
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Thus, increasing accuracy is computationally expensive, and increasing
dimension more so, but nonetheless the process should compare favorably

with numerical integration, as borne out by some preliminary comparisons,

where Romberg integration was about 10x slower.
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mgnM: Values of c,jk

Interval (s-t,s+t)
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Wk
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E
4
4 k=1
4 25t%w (6% (w (247 (57w ) (56%w+1 ) 635 )B4 ) 315)
X 945
|

k=2

TR R

_ 26? (u(et? (25%u (55249 )+1 )-6352)-21 )
&5

k=3

. oat e (1w (552w )-21)
| s

k=l
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